Differentiation of Exponential Functions
Differentiation of Exponential Functions
Example 1:
$$ y=e^{-x},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=e^{-x}$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^{-x}$$
$$ \textup{Let}\;\; u= -x$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^u$$
$$ \frac{dy}{dx}=\frac{d}{du} e^u \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} e^x=e^x$$
$$ \therefore\;\; \frac{dy}{dx}=e^u \frac{d}{dx} (-x)$$
$$ \frac{dy}{dx}=e^u(-1)$$
$$ \frac{dy}{dx}=-e^u$$
$$ \frac{dy}{dx}=-e^{-x}$$