Differentiation of Logarithmic Functions
Differentiation of Logarithmic Functions
Example 1:
$$ y=ln \,3x,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=ln \,3x$$
$$ \frac{dy}{dx}=\frac{d}{dx} ln \,3x$$
$$ \textup{Let}\; u= 3x$$
$$ \frac{dy}{dx}=\frac{d}{dx} ln\,u$$
$$ \frac{dy}{dx}=\frac{d}{du} ln\,u \frac{du}{dx}$$
$$ \frac{dy}{dx}=\frac{1}u \frac{d}{dx} (3x)$$
$$ \frac{dy}{dx}=\frac{1}{3x}(3)$$
$$ \frac{dy}{dx}=\frac{1}x$$