Differentiation of Hyperbolic Functions
Differentiation of Hyperbolic Functions
Example 1:
$$ y=\sinh 5x,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=\sinh 5x$$
$$ \frac{dy}{dx}=\frac{d}{dx}\sinh 5x$$
$$ \textup{Let}\; u= 5x$$
$$ \frac{dy}{dx}=\frac{d}{dx} \sinh u$$
$$ \frac{dy}{dx}=\frac{d}{du} \sinh u \frac{du}{dx}$$
$$ \because\frac{d}{dx}\sinh x=\cosh x$$
$$ \therefore\frac{dy}{dx}=\cosh u \frac{d}{dx}4x$$
$$ \frac{dy}{dx}=\cosh 5x (5\frac{d}{dx}x)$$
$$ \because\frac{d}{dx} x=1 $$
$$ \therefore \frac{dy}{dx}=\cosh 5x (5(1))$$
$$ \frac{dy}{dx}=\cosh 5x (5)$$
$$ \frac{dy}{dx}=5\cosh 5x $$