Integration of Trigonometric Functions
Example 1:
$$\int \sin^4 x \cos x\, dx $$Solution:
- $$\int \sin^4 x \cos x\, dx = \int (\sin x )^4\cos x \, xdx$$
- $$\textup{Let}\,\, u=\sin x$$
- $$du = \cos x dx$$
- $$\int \sin^4 x \cos x\, dx = \int u^4 \,du $$
- $$= \frac{u^{4+1}}{4+1}+C$$
- $$= \frac{u^{5}}{5}+C$$
- $$= \frac{1}{5} \, u^5+C$$
- $$= \frac{1}{5} \, (\sin x)^5+C$$
- $$= \frac{1}{5} \, \sin^5 x+C$$