Integration by parts

Integration by parts

Example 1:

$$\int xe^x \, dx $$

Solution:

$$\int xe^x \, dx $$ $$\textup{Let}\,\, u=x \;\;\;\;\;\;\;\; dv = e^x \,dx$$ $$\;\; du=dx \;\;\;\;\;\;\;\; v = e^x $$ $$\because\int u\,dv = uv-\int v\,du$$ $$\therefore\int xe^x \,dx = xe^x-\int e^x\,dx$$ $$\because\int e^x\,dx = e^x + C$$ $$\therefore\int xe^x \,dx = xe^x-e^x+C$$